南京伊月环保科技有限公司

南京伊月环保科技有限公司

南京伊月环保科技有限公司

南京伊月环保科技有限公司

环境生态与湿地保育研究团队

团队介绍

环境生态与湿地保育研究团队自2002年组建以来,充分发挥我校在沼泽湿地与环境生态领域的历史积淀与研究优势,针对我国东北沼泽湿地存在问题及研究热点开展了环境生态与湿地保育相关的理论基础及应用研究。研究团队现有国家自然科学基金优秀青年基金获得者1人,教授4人、副教授5人、讲师2人。具有生态环境部重点实验室平台1个,吉林省部共建重点实验室1个,吉林省科技创新中心1个,吉林省国际合作基地平台1个。承担国家973计划项目、国家科技重大专项计划项目、环保部公益项目、国家重点研发计划项目、国家自然科学基金项目等各类项目112项。获得水利水电部、能源部、教育部等省部级奖励16项。近五年发表SCI论文一百余篇,获授权专利20余项。主要研究方向:(1)湿地生态过程与功能机理;(2)退化湿地与植被恢复技术;(3)湿地功能开发与资源管理。

现承担科研项目14项,主要包括:国家重点研发计划课题“典型沼泽生境功能稳定性与生物多样性耦合机制”255万、国家自然科学基金优秀青年基金“东北沼泽湿地生态过程”200万、国家自然科学基金面上项目“松嫩平原湿地植物扁秆荆三棱适应盐碱环境的生长调控机制”54万、吉林省水利水电勘测设计研究院“基于生态文明建设需求的吉林省西部水资源配置及生态效益分析”235万。

Environmental Ecology and Wetland Conservation Research Group

Environmental ecology and wetland conservation research team has given full play to historical accumulation and research advantages of Northeast Normal University in the field of wetland and environmental ecology and carried out theoretical basis and application research on environmental ecology and wetland conservation in view of the existing problems and research hotspots of northeast wetland since its establishment in 2002. The research team has one National Science Fund for Excellent Young Scholars, four professors, fiver associate professors and two lecturers. It has one key laboratory of the Ministry of Ecology and Environment, one key laboratory co-founded by Jilin Province and the Ministry of Science and Technology, one Science and Technology Innovation Center of Jilin Province and one International Cooperation Base of Jilin Province. It has undertaken 112 projects, including National Program on Key Basic Research Project (973 Program), National Science and Technology Major Project of the Ministry of Science and Technology of China, Environmental Protection Public Welfare Project, National Key Research and Development Program of China, National Natural Science Foundation of China. It has won 16 provincial and ministerial awards from the Ministry of Water Resources and Hydropower, the Ministry of Energy, the Ministry of Education, etc. In the past five years, it has published more than 100 SCI papers and obtained more than 20 patents. The main research interests include: (1) wetland ecological process and functional mechanism; (2) degraded wetland and vegetation restoration technology; (3) wetland function development and resource management.


代表性成果

--冻融对湿地土壤—植物的遗留效应

揭示了冻融过程→土壤反硝化→植物生长的级联机制,为春季湿地植物较其它生态系统返青晚提供了一种新的解释。



--植物种内基因型多样性降低土壤生物群对植物生长的抑制作用

植物基因型多样性在稳定生态系统功能,提高系统生产力等方面具有重要作用。本研究通过温室控制实验,对土壤生物群是否影响基因型多样性与系统生产力之间的关系开展研究,结果表明土壤生物群对植物生长的负效应,随植物种内基因型多样性的增加而显著降低,该结果首次证实土壤生物群在影响基因型多样性与生态系统生产力之间关系中具有重要意义,为基因型多样性提高系统生产力机制研究提供了全新的思路。



--盐度影响人工结皮微生物组成和功能:对修复盐渍化土壤的启示

接种蓝藻构建人工结皮是一种极具应用前景的退化土壤生态修复方式。为了探究不同蓝藻对盐分的耐受能力,筛选对盐渍化土壤具有较强耐受性的蓝藻,本研究对盐胁迫下人工结皮的群落结构变化进行了研究。结果发现,不同蓝藻对盐分的敏感程度及耐受性存在明显差。人工结皮在接种后18年内,都是以Microcoleus vaginatus 和Scytonema javanicum占优势,而在1%的盐份胁迫下,这两种的相对丰度均显著下降。相较之下,更高的M. steenstrupii 、 Phormidium sp.基因拷贝数及相对丰度被检测到。本研究证实了结皮蓝藻的盐分偏好性,可为筛选盐渍化土壤生态修复的优良藻株提供重要参考。


--植物生长繁殖对土壤生物与非生物因素的反馈调节

揭示了樱桃番茄在土壤养分、土壤丛枝菌根真菌、土壤线虫综合作用下的生长繁殖策略。发现植物根系在面临线虫取食的压力下,将更多的氮和磷分配给地下根系。该过程不仅有利于满足根系功能的维持,更重要的是促进菌根定殖和提高根系抵抗线虫侵害的能力。验证了土壤养分调控下,植物可能通过改变其体内的养分分布来更好的适应土壤环境的变化,并且其养分的分配格局受到土壤和生物因素的综合影响。


--微藻阴极燃料电池产生物电协同强化去除噻虫啉

THI(10、20和50 mg/L)。结果表明,与开路条件相比,生物电(闭路)的产生可使THI的去除率显著提高13.14–32.47%。中低浓度噻虫啉(10、20mg/L)对小球藻的生物量并无明显影响;最高的噻虫啉去除率与生物电压的产生(202 mV)均发生在低浓度10mg/L组。另外,在整个降解过程中共检测到7种代谢产物,其毒性均显著低于母体噻虫啉。本研究结果证实,微藻燃料电池在协同生物电产能、高效去除新烟碱类农药方面具有良好的应用前景。

代表性论文

1.Wang P.; Weiner J.; Cahill J.; Zhou D.W.; et al. Shoot competition, root competition and reproductive allocation in Chenopodium acuminatum. Journal of Ecology, 2014. 102: 1688-1696.

2.Luo W, Ragan M. Callaway, Daniel Z. Atwater. Intraspecific diversity buffers the inhibitory effects of soil biota. Ecology, 2016, 97(8): 1913-1918.

3.Song Y.; Zou Y.C.; Wang G.P; Yu X.F.; Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis, Soil Biology & Biochemistry, 2017, 109: 35-49.

4.Zhi W.; Yuan L.; Ji G.D.; He C.G.; Enhanced long-term nitrogen removal and its quantitative molecular mechanism in Tidal Flow Constructed Wetlands. Environment Science and Technology, 2015, 49: 4575-4583.

5.Wu L.; Farías M.; Torres R.; Xia L.; et al. Salinity affects microbial composition and function in artificially induced biocrusts: Implications for cyanobacterial inoculation in saline soils. Soil Biology and Biochemistry, 2022, 170, 108691.

6.Bian H.F.; Zheng S.; Liu Y.; Xu L.; et al. Changes to soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps, Catena, 2020.194: 104684.

7.Zheng S.; Bian H.F.; Quan Q.; Xu L.; et al. Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China, GEODERMA, 2018.329: 82-90.

8.Li J.w.; Bian H.F.; Zhao L.Y.; Sun X.Q. et al. Characteristics of soil carbon emissions and bacterial community, Science of the Total Environment, 2022.839: 156242.

9.Yu X.F.; Ding S.S.; Lin Q.X.; Wang G.P.; et al. Wetland plant litter decomposition occurring during the freeze season under disparate flooded conditions, Science of the Total Environment, 2020, 706: 136091.

10.Ma Y.; Qi Y., Yang L., Wu L; et al. Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration. Journal of Cleaner Production. 2021, 292(10), 126005.



版权所有:南京伊月环保科技有限公司

吉林省长春市净月开发区净月大街2555号

 

东师官方微信

东师官方微博